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1 Introduction

Environmental scientists have been developing models and projections of climate

change since, at least, the establishment of the Intergovernmental Panel on Climate

Change (IPCC) in 1988. To represent the interactions of numerous natural systems,

the scientific community relies on integrated assessment models (IAMs), which typi-

cally contain processes for carbon emissions, greenhouse gas concentrations, temper-

ature increases, physical changes and social systems. Because the climate modelling

community has, appropriately, focused on accurate representation of the Earth’s

physical systems, the socio-economic linkages to climate change in IAMs tend to

be simplistic. Therefore, economists are attempting to strengthen these linkages

through the extension of IAMs, gearing them toward the measure of the social cost

of carbon (SCC).

The social cost of carbon approach seeks to monetize the negative externalities of

climate change as the marginal social cost of an extra tonne of CO2-equivalents in the

atmosphere. This social price is operationalized as a society’s aggregate willingness

to pay to avoid the impacts of climate change (see Fankhauser, Tol, & Pearce, 1997).

In other words, SCC is equal to the welfare society gains from the environmental

improvement due to a one tonne reduction in CO2 emissions. However, measurement

of SCC is typically done through the lens of the willingness to accept climate change

(Tol, 2009).1 That is, how much would you (society) have to be paid in order to

make up for the damages of climate change. Estimating these damages requires the

comparison of societal welfare along different output and environmental trajectories.

It is for wont of the latter that economists have turned to environmental IAMs to

buttress projections of socio-economic outcomes.

This report elucidates one aspect of economic IAMs: the damage function. Dam-

age functions map environmental changes (primarily mean temperature increases)

to economic impacts. This crucial step in the determination of SCC appears in very

1This raises an important conceptual difficulty: willingness to pay is a marginal benefit and
willingness to accept is a marginal cost. These two items equal only at the optimum. If society
proceeds along a suboptimal path then the SCC value is ambiguous (Foley, Rezai, & Taylor, 2013).
See section 6.3 for a further discussion.
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different form in the leading economic IAMs. Through sections 3, 4, and 5 we re-

view, in turn, the damage functions of the Dynamic Integrated Model of Climate

and the Economy (DICE), the Framework for Uncertainty, Negotiation and Distri-

bution (FUND) and the Policy Analysis of the Greenhouse Effect (PAGE). Section 6

discusses some empirical, programmatic and conceptual limitations of these three

IAMs. Section 7 concludes. We begin, however, by providing a brief elaboration on

integrated assessment modelling practices used by the IPCC. Readers familiar with

IAMs and the IPCC’s recent work may wish to skip this review.

2 Integrated Assessment Models

2.1 IPCC: Modelling with Representative Concentration Pathways

A key feature of the Intergovernmental Panel on Climate Change’s (IPCC) Assess-

ment Reports is to provide benchmark scenarios of emissions and climatic change

for researchers. The Fifth Assessment Report (AR5) implements a new method

for climate projections called Representative Concentration Pathways (RCPs) (see

IPCC Working Group I, 2013). Earlier assessment reports used the IPCC scenarios

(known as IS92) in the first and second assessment reports released in 1990 and 1995.

In the third and fourth IPCC assessment reports (2000 and 2007) emission scenar-

ios (SRES), summarized in Special Report on Emission Scenarios (IPCC Working

Group III, 2000), were use to model climate change projections. RCPs differ from

these earlier vintage in terms of proach and type of output.

RCPs produce estimates of global mean temperature changes and attendant im-

pacts on human and ecological systems based on an assumed level of radiative forcing

in 2100. This is in contrast to projecting a probability distribution of global mean

temperature from a set of initial emissions assumptions. Indeed, RCPs are not pro-

jections in a statistical sense, they are deterministic scenarios. A RCP, therefore, does

not contain a measure of variance for its projection of global temperature change.

Similarly, one cannot directly compare the relative accuracy (i.e., standard error) of

different RCPs. Instead, the four RCPs chosen for the AR5 are “representative” of
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projections used in the climate modelling literature.

Figure 2: Comparison of RCP and earlier Model Generations

Source: Moss et al., 2008, p. iv

In terms of approach, previous IPCC climate projections were built a sequentially.

RCPs are developed according to a ‘parallel approach’ that links climate and envi-

ronmental projections with integrated assessment models, or IAMs (see Figure 2).

IAMs are complex algorithms linking the interactions carbon emissions, the physical

environment and socio-economic systems (see Figure 3 for two schematic examples).

In earlier assessment reports the IAMs used for climate projections were developed

in relative isolation from the climate modelling community (Moss et al., 2008). The

parallel development structure ensures that RCPs use a consistent approach that al-
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lows the Integrated Assessment Model (IAM) and Climate Model (CM) communities

to each run experiments and feed information back and forth.

The IPCC chose four RCPs the Fifth Assessment Report. The RCPs are specified

according to their assumed level of radiative forcing (inW/m2) in the year 2100. Each

pathway starts from the common base year 2000. The four RCPs are summarized in

Table 1.

Table 1: Representative Concentration Pathways used in AR5

Name Concentration Team & Model Notes

RCP2.6 490 CO2-eq
(at peak)

IMAGE model team
led by Detlef van
Vuuren.

This pathway involves emissions
mitigation and a low forcing
scenario. It is also known as
RCP3PD since radiative forcing
peaks at 3 W/m2 and then declines
to 2.6 W/m2 in 2100.

RCP4.5 850 CO2-eq MiniCAM model
team led by Allison
Thompson.

This is the lower of the two
mid-range pathways in which
radiative forcing stabilizes by 2100.

RCP6 650 CO2-eq AIM model team led
by Toshihiko Masui.

This is the higher of the two
mid-range pathways in which
radiative forcing stabilizes by 2100.

RCP8.5 1370 CO2-eq MESSAGE model
team led by Keywan
Riahi.

This extreme pathway reaches a
radiative forcing level of 8.5 W/m2

by 2100, but without stabilization.
Hence the global mean temperature
will continue to increase into the
22nd-century.

Source: van Vuuren et al. (2011)
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Figure 3: Diagramatic Examples of RCP Integrated Assessment Models

(a) Asia-Pacific Environmental Innovation
Strategy Project

Source: APEIS-IEA Technical Summary

(b) Integrated Model to Assess the
Global Environment

Source: IMAGE website
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2.2 The Social Cost of Carbon

Most IAMs, including those used to generate the RCPs, model economic responses

and damages as shifting energy profiles and physical impacts, meaning the use of

even simplistic economic models is often lacking. Although each IAM may add

its own economic complexities,2 they are not designed for economic assessments

(Nordhaus & Sztorc, 2013, p. 23). Indeed RCPs are designed to capture the direct,

indirect and feedback effects of carbon emissions on the physical environment. Of

course, it is often easier for policymakers to work with a single numerical estimate

of impacts, which has generated a demand for measuring climate change damages in

terms of dollars or lost GDP. Since RCPs are in no way designed to produce monetary

estimates, economists have stepped into the modeling fray. The three economic IAMs

reviewed in this report are designed to yield such an impact estimate via the social

cost of carbon (SCC).

The three models reviewed here – DICE, FUND and PAGE – are chosen because

they are, academically and politically, the most prominent IAMs that calculate the

economic cost of climate change. The models offer more economic detail than envi-

ronmental IAMs, but are still much more rudimentary than typical macroeconomic

models. According to the US Interagency Working Group on Social Cost of Carbon

(2010, p.5-6):

These models are useful because they combine climate processes, economic

growth, and feedbacks between the climate and the global economy into a

single modeling framework. At the same time, they gain this advantage at

the expense of a more detailed representation of the underlying climate and

economic systems. DICE, PAGE and FUND all take stylized, reduced-form

approaches [...] Other IAMs may better reflect the complexity of the science in

their modeling frameworks but do not link physical impacts to economic dam-

ages [...] Underlying the three IAMs selected for this exercise are a number of

2Examples include: demand responses in the MACRO algorithm of MESSAGE; the cost in terms
of GDP of adaptation in IMAGE, and; the costs of environmental and water systems investment
in AIM.
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simplifying assumptions and judgements reflecting the various modelers’ best

attempts to synthesize the available scientific and economic research charac-

terizing these relationships.

Hence, although these IAMs are considered to be on the cutting edge of economic

climate modelling, they still impose a great deal of simplification in their environmen-

tal and economic aspects. Furthermore, as shown below, the extent of simplification

varies widely across these models.

Economically, the uniting feature of the FUND, DICE and PAGE models is

that they are each built on the principle of measuring climate change as a negative

externality (i.e., the social cost of carbon). SCC is defined as the marginal impact

of emissions above pre-industrial levels (≈ 250-300ppm CO2). Beyond this common

conceptual basis, the calculation of SCC varies greatly between the models (and even

between different vintages of the same model). Indeed, even the baseline against

which different carbon concentration paths are compared is quite different in each

model.3 A detailed comparison of the models’ final social cost estimates is beyond

the scope of this report. Rather, sections 3 through 5 elucidate the functional forms

of each model’s mapping of climatic variables into economic impacts (damages or

benefits, as the case may be).

Conversely, the environmental aspects of these three IAMs are far less diverse.

This is because the economists’ have built their models on top of the extant envi-

ronmental IAMs, similar to those used to generate RCPs. Therefore, the economic

IAMs share a basic modelling structure (Figure 4). The models connect emissions

to atmospheric greenhouse gas concentrations by a carbon reservoir or decay model;

concentrations are, in turn, translated into global (and regional) mean temperature

changes via an equation for radiative forcing. These two modelling steps come en-

tirely from the climatic and environmental literature. Environmental IAMs then link

these changes to physical and biological impacts which have some (weak) connection

to the economies’ emissions trajectories, as represented by the thin arrows in Fig.

3The FUND model, for example, simulates carbon ‘pulses’ in each year and sums their total net
(positive or negative) effect (Ackerman & Munitz, 2012a). The DICE model projects costs on
a rolling basis starting from some initial conditions, and compares economic values against the
continuation of 2010 global policies at the baseline (Nordhaus & Sztorc, 2013).
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Figure 4: Economic Damages as the Social Cost of Carbon in IAMs
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4. The economic IAMs discussed throughout build on this environmental structure

by introducing a sub-model of economic damages which are then translated into

economic activity and, hence, emissions trajectories.

Exactly how global and regional temperature changes4 are translated into eco-

nomic impacts is the focus the subsequent three sections. We first review the most

recently revised model: William Nordhaus’s the Dynamic Integrated Model of Cli-

mate and the Economy (DICE 2013R).5 DICE uses the most simplistic damage

function of the three IAMs reviewed here because, interestingly, Nordhaus is pur-

posefully reducing the model’s complexity. We provide some comparison to the

earlier versions, DICE 2010 and DICE-99. More surprising is that DICE is the

only model with endogenously determined economic activity. The other two models

reviewed are, respectively, the Framework for Uncertainty, Negotiation and Distri-

bution (FUND) and the Policy Analysis of the Greenhouse Effect (PAGE), both

of which have more complex damage functions but exogenously determined growth

paths. Because FUND is a highly complex model, we detail only the most impactful

4CO2 concentrations directly impact the economy in some of FUND’s sectors, see sec. 4.
5The regional version, Regional Integrated Model of Climate and the Economy (RICE 2013), is a

simply disaggregated version of DICE 2013R and therefore does not add to the understanding of
Nordhaus’s approach to modelling damages.
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damage functions. Finally, PAGE is reviewed as something of a third way between

the approaches of DICE and FUND.

3 DICE: Dynamic Integrated Model of Climate and the

Economy

William Nordhaus’s Dynamic Integrated model of Climate and the Economy (DICE)

– and its regional variant (RICE)6 – is the longest-running and, perhaps, best known

model of the social cost of carbon. The model has undergone several major revi-

sions in recent years. In particular, the functional form of damages has become

progressively less complex in recent versions. The most recent version, DICE 2013R,

has a single-equation representation of damages. We begin with a thorough review

of DICE 2013R in section 3.1, and then compare its damage function to the more

complicated vintages DICE 2010 and DICE-99 in sections 3.2 and 3.3, respectively.

3.1 DICE 2013R

The economy in all versions of DICE is a discrete-time Ramsey-type dynamic opti-

mization framework built on a global level. The model reviewed here, DICE 2013R,

is the latest version available. There are major changes from the previous version

DICE 2010, which is discussed below in section 3.2. In DICE 2013R, Nordhaus has

taken a step back and reduced the complexity of the damage function (and of the

model overall). The major departures from earlier versions are:

(i) Carbon extraction costs are now nil. Hence, there is no need to estimate the

Hôtelling extraction costs;

(ii) Rather than earlier vintages’ baseline of no policy action against climate change,

the baseline scenario is now unchanged policies from 2010, and;

6The regions in RICE are the US, EU, Japan, Eastern Europe & FSU, China, India, Middle East,
SSA, Latin America, other HICs, other LICs.
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(iii) The damage function is now a single, reduced-form equation.7 The 2013 damage

function is based on the thorough yet admittedly incomplete survey of the

literature in Tol (2009) . To account for non-quantified impacts (e.g. extreme

storms) Nordhaus adds an “ad hoc” 25% increase to the estimated level of

damages.

In keeping with earlier vintages, CO2 is the only endogenous GHG in the produc-

tion process. The emissions-to-CO2 atmospheric concentration model is a 3-reservoir

carbon cycle. Equivalents (e.g. CH4, SO2, and CFCs) are treated as exogenous.

There is assumed to be a “backstop technology” (i.e., a pure, renewable energy

source) that eventually becomes globally available and competitively priced relative

to fossil fuels. The discrete time steps in the DICE and RICE models are decades,

i.e. ∆t = 10 years. Therefore, the model has only 10 iterations before reaching the

year 2100. Nordhaus’s equations are parameterized to reflect these large temporal

steps. On the economic side, damages, although now more simple, continue to be

modelled as ‘negative capital’ that reduces net output. Like the other models re-

viewed here, there is no direct impact on agents’ utility – all damages are effectuated

through output reductions. Finally, DICE is run as a deterministic optimal control

problem.8 Use of an optimizing representative agent distinguishes DICE from the

FUND and PAGE models that generate scenarios from repeated random sampling

from predefined distributions (i.e., without any optimization criteria).

The economy in the DICE 2013R model has the standard intertemporal opti-

mization structure with CES utility

max
c,µ

T∑
t=1

(1 + ρ)−t · L(t) · c(t)
1−η

1− η
(1)

7This is down from 7 sectoral damage estimated in versions up to the DICE 2007. The DICE 2013R
manual states “further work indicated those [sector-specific damage] estimates were increasingly
outdated and unreliable.” (Nordhaus & Sztorc, 2013, p. 11)
8The DICE model is written in General Algebraic Modeling System (GAMS) and in Excel. How-

ever, as of this writing, the Excel version of DICE 2013R is not accessible on the DICE website,
although it says that it should be.
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subject to:

Λ(t) = θ1(t)µ(t)θ2︸ ︷︷ ︸
emissions reductions rate

(2)

Ω(t) = ψ1TAT (t) + ψ2TAT (t)2 (3)

Q(t) = [1− Λ(t)]︸ ︷︷ ︸
abatement

· [1 + Ω(t)]−1︸ ︷︷ ︸
damages

·Y (t) = [1− Λ(t)] ·
(
A(t)K(t)αL(t)1−α

1 + Ω(t)

)
(4)

where Λ(t) is the abatement effort, Ω(t) is the damage function which is a quadratic

function of global mean atmospheric temperature, TAT , with φ1 ≥ 0, φ2 > 0. Equa-

tion (1) says the representative agent chooses its per consumption level, c(t), at each

time interval (for t = 1, . . . , T ) which is discounted by the fixed pure rate of time

preference, ρ. The discounted per capita consumption from each period is scaled by

the total population L(t) at time t in accordance with the aggregate willingness to

pay approach (see Tol, 2009).

As usual Y (t) denotes the level of gross global output. However, the more im-

portant variable in this model is the level of output net of climatic damages and

abatement costs, Q(t). Although different scenarios can be run by varying the pa-

rameters, µ(t) is central to comparing abatement policies. The model can be run

with µ(t) as a control variable. This produces the ‘optimal path’ of DICE. However,

µ(t) can be fixed according to some predefined set of policies. Regardless of the role

played by µ(t), it effectively determines how much current consumption the agent

foregoes in favour reduced pollution.

In addition to equations (1)–(4) the model’s accounting is closed via the standard

relations

Q(t) = C(t) + I(t), c(t) =
C(t)

L(t)
, K(t) = I(t)− δkK(t− 1) (5)

where C(t) is total consumption, I(t) is investment in capital, c(t) is per capita

consumption and δk is a fixed rate of capital depreciation.
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Population, L(t), and technology, A(t), both grow exogenously according to the

discrete logistic functions

L(t) = (1 + gL(t))L(t− 1) where, gL(t) =
gL(t− 1)

1 + δL

A(t) = (1 + gA(t))A(t− 1) where, gA(t) =
gA(t− 1)

1 + δA

The dynamic climate equations are in a highly reduced form. Emissions, CO2

concentration, radiative forcing and temperature change are described by a total of 7

equations. First, emissions are the sum of industrial emissions, Eind, which is driven

by global output levels, and emissions from land use, Eland, which are treated as

exogenous.

E(t) = Eind(t) + Eland(t) (6)

where

Eind(t) = σ(t)
[
1− µ(t)

]
A(t)K(t)αL(t)1−α︸ ︷︷ ︸

Y (t)

(7)

The parameter σ(t) captures the carbon intensity of production. Although exoge-

nous, the forward estimates are based on a logistic equation similar to technological

and population growth:

σ(t) = (1 + gσ(t))σ(t− 1) where, gσ(t) =
gσ(t− 1)

1 + δσ

Emissions become slowly decaying CO2 concentrations according to a 3-reservoir

model of atmospheric concentrations (MAT ), upper ocean concentrations (MUP ) and
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deep ocean concentrations (MLO),MAT (t)

MUP (t)

MLO(t)

 =

φ11 φ21 0

φ12 φ22 φ31

0 φ23 φ33


MAT (t− 1)

MUP (t− 1)

MLO(t− 1)

+

E(t)

0

0

 (8)

Emissions feed directly into atmospheric concentrations of CO2 which slowly degrade

(0 < φ11 < 1), but persistently feed into the oceans’ holding of GHGs (φ12, φ23 > 0)

which prolongs atmospheric concentration levels (φ21 > 0).

As emissions lead to concentrations the greenhouse effect raises the global mean

temperature according to DICE’s simplified radiative forcing function

F (t) = λ log2

[
MAT (t)

MAT (1750)

]
+ Fexog(t) (9)

where non-CO2 gases are assumed to have a net exogenous impact on radiative

forcing, Fexog. As seen in (9), the radiative forcing level is determined with respect

to pre-industrial (1750 CE) levels of CO2 concentrations.

Finally, radiative forcing levels raise the atmospheric temperature TAT , which

interacts with the deep ocean temperature, TLO, according to

TAT (t) = TAT (t− 1) + ξ1

{
F (t)− ξ2TAT (t− 1)− ξ3

[
TAT (t− 1)− TLO(t− 1)

]}
(10)

TLO(t) = TLO(t− 1) + ξ4
[
TAT (t− 1)− TLO(t− 1)

]
(11)

Recall that it is only the level of the atmospheric temperature, TAT , that drives the

damage function in equation (3).

Since the DICE model is a deterministic optimal control model, scenario compar-

ison is generated by the choice of parameters and initial conditions. In each scenario

the marginal cost of carbon is calculated by the Euler optimality condition. For the
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ith parameterized scenario we have:

Social Cost of Carbon(t)i = 1000 ·
(
−∂E(t)/∂t

∂C(t)/∂t

)
(12)

This gives the standard value of the ‘shadow price’ of carbon emissions (scaled up

by 1000 in Nordhaus’s GAMS coding). The value in (12) gives the SCC valued

under different policy scenarios. In other words, this figure tells policymakers what

the price of CO2 emissions should be set at, in $ per tC for year t, to achieve a

particular, reduced emissions trajectory (Nordhaus & Sztorc, 2013, p. 32-34).

3.2 DICE 2010

The previous version of the DICE/RICE models differed from the most recent version

only in terms of baseline scenario and the damage function equations. The basic

economic and climatological framework remains unchanged (see Nordhaus, 2010a,

2010b). In particular, net output Q(t) is still derived as gross output, Y (t), scaled

down by damages and abatement costs:

Q2010(t) = [1− Λ(t)] · [1 + Ω2010(t)]
−1 · Y (t) (4′)

where all variables are the same as in DICE 2013R, but the damage function, Ω2010,

has a different structure (discussed below).

The 2010 version of DICE uses the same 3-reservoir model of carbon capture, ra-

diative forcing and temperature change functions as well as the same functional form

of industrial (endogenous) and land (exogenous) emissions as specified in equations

(6) through (11) above.

An important addition in the DICE 2010 model is the explicit inclusion of Sea

Level Rise, SLR(t). Although omitted in DICE 2013R, SLR directly increases the

calculation of the damage function Ω2010. Sea level rise for DICE 2010 is specified as

SLR(t) = SLR(t− 1) +

[
5∑
j=1

π1,j + π2,jT (t− 1) + π3,j
(
T (t− 1)− T̄ j

)]
(13)
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where each π is a parameter and T̄ is a threshold temperature, above which Arctic

ice sheets begin to melt (Nordhaus, 2010b).

Equation (13) is the sum of the past accumulated level of SLR and the impact

from thermal expansion, glacier melting and shrinking ice sheets. The parameters for

each of these effects are calibrated for each of the world’s five oceans (j = 1, . . . , 5).

The sum of these three oceanic drives (in the square brackets) are used to determine

the decadal increase in sea levels above their height in 2000.

In the supporting documentation to his PNAS paper outlining DICE 2010, Nord-

haus (2010b) defines the damage function in generic form as

Ω2010(t) =
g (T (t), SLR(t),MAT (t))

1 + g (T (t), SLR(t),MAT (t))
(14)

where T (t) is global/regional mean temperature over pre-inudstrial levels, SLR(t) is

the sea level rise above 2000 levels and MAT (t) is, as before, the atmospheric concen-

tration of CO2. Equation (14) suggests each of these variables directly increases the

level of damages to the economy. Unfortunately, the supplemental documentation

does not provide a more specific formulation of damages than (14).

Thankfully the damage function can be found in Excel algorithm for DICE 2010.9

However, this function utilizes only temperature and sea level rise – both of which

are quadratic. Specifically, Nordhaus’s Excel spreadsheet uses:

Ω2010(t) = τ1T (t) + τ2T
2(t) + λ1SLR(t) + λ2SLR

2(t) (15)

where the parameters τ1,2 and λ1,2 are given.

Thus, DICE 2010 is virtually identical to the most recent Nordhaus model with

the exception of an explicit modelling of sea level rises and its quadratic impact on

net output in (4′).

9Available at http://www.econ.yale.edu/∼nordhaus/homepage/RICEmodels.htm
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3.3 DICE-99

The 1999 version of the DICE and RICE models, detailed in Nordhaus and Boyer

(2000), differ in several important aspects from the later 2007, 2010 and 2013 ver-

sions. An important distinction is that DICE-99 and RICE-99 are not just aggre-

gated/disaggregated versions of the same model, as is the case with later vintages

(albeit with differing, empirical paramaterization for the various regions). RICE-99

employs a cap-and-trading scheme which cannot be modeled at the global (DICE)

level. Secondly and, more importantly for our purposes, the DICE-99 documentation

outlines damage functions for 7 sectors.10

As with all versions of DICE, the 1999 vintage uses a Ramsey optimization

framework in which climate change is treated as a ‘negative accumulated capital’.

Therefore, the objective function (or, ‘General Welfare’) function is a discrete-time,

discounted utility function (scaled for the population) as in equation (1). Also in

keeping with later vintages, population and technology grow according to a logis-

tic, exogenous equation. DICE-99 was the first to introduce the 3-reservoir model

as represented in (8), and uses the same radiative forcing and temperature change

equations (9)–(11).

There are, however, crucial differences in the basic structure of DICE-99. First,

while the gross production function, Y99(t), is Cobb-Douglas, it now has a third factor

of production: carbon energy. This is operationalized as an ‘energy services’ input,

or ES(t), such that:

Y99(t) = A(t)K(t)αES(t)βL1−β−α − cE · ES(t), with 0 < α + β < 1 (16)

where, as before, A(t) is Hicks-neutral technology, L(t) is labour input and K(t) is

physical capital. The exponents α, β and 1−α−β are the elasticities of output with

respect to the three factors of production. Clearly there are constant returns to scale

and diminishing returns to each factor. The deducting cEES(t) term represents the

10Documentation for the DICE-99 model is still available in the Warming the World: Economics
Models of Global Warming section of Nordhaus’s homepage. The damage functions for the sectors
discussed below are found in Chapter 4.
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cost of carbon energy in production.

The cost of carbon, cE(t), is treated as a Pigovian tax and is set equal to the

Hôtelling cost, q(t), plus a markup, %(t),

cE(t) = q(t) + %(t) (17)

Since q(t) is derived from the Hôtelling rule it is determined by an optimization

subroutine in DICE-99 (and why, presumably, it has been left out of later versions).

Although damages are more complex in DICE-99, the net output function takes

a similar form as before, however abatement costs are not explicitly modelled in this

vintage:

Q99(t) = (1 + Ω99(t))
−1 · Y99(t) (18)

Therefore, only climate damages separate gross and net output in DICE-99. The

emissions-reduction strategy is, instead, modelled as a cap-and-trade scheme at the

regional level, requiring the use of RICE-99. That is, abatement efforts can only be

captured by the regional version of Nordhaus and Boyer’s model.

In RICE-99 carbon limits and inter-region trading are built into the model ac-

cording to

Q99,i(t) + τi(t)[Πi(t)− Ei(t)] = Ci(t) + Ii(t) (19)

where i is the region’s index. Ci and Ii the region’s total consumption and investment.

Πi(t) is the region’s total allowance (cap) on carbon emissions for the period and τi(t)

is the price of the permits. This may also be interpreted as the emissions tax, rather

than the permit price, depending on the policy framework (Nordhaus & Boyer, 2000,

chapter 2). The trading scheme model is an interesting divergence from later DICE

models, but further discussion is beyond the scope of this report.

In the mathematical overview of the DICE-99 model, Nordhaus and Boyer (2000,

chapter 3), as well as in the GAMS code (Nordhaus & Boyer, 2000, appendix D),

appear to use only a single damage function affecting the aggregate output level

represented in equations (16) and (18). This is the familiar quadratic temperature-
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damage equation

Ω99(t) = φ1T (t) + φ2T
2(t) (20)

However, in Chapter 4 Nordhaus and Boyer (2000) state that they have estimated

damage functions for seven sectors. These are:

1. Agriculture

2. Sea level rise

3. Other market sectors

4. Health

5. Non-market amenity impact

6. Human settlements and ecosystems

7. Catastrophes

For each sector their approach is to first estimate parametric damages assuming at

2.5◦C increase in global mean temperature and to then extrapolate the damages to

higher and lower levels of climate change.

Only after reviewing the empirical literature for such damages do they estimate

“impact indices as functions of temperature” (Nordhaus & Boyer, 2000, chapter

4, section 4). Although Nordhaus and Boyer are careful in the calibration of the

parameters, the damage functions themselves tend to be fairly simple. For the 6

sectors explicitly modelled, Nordhaus and Boyer use only 3 functional forms.11

The baseline damage function is in agriculture which is quadratic (quite similar

to equation 20) and is specified for each i region’s temperature level Ti above the

temperature that would prevail without climate change T 0
i . The agricultural damage

function is

Ωag = α0 + α1(Ti(t) + T 0
i (t)) + α2(Ti(t) + T 0

i (t))2 −
[
α0 + α1T

0
i (t) + α2 + T 2

0 (t)
]

(21)

This equation is also used to estimate regional-level damages for the “other markets”

11Catastrophic damages follow a piecewise function in temperature that is linear for global mean
temperatures from 0◦to 3◦above pre-industrial levels, and exponential for T (t) > 3◦. No further
details are provided.
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Ωom, and “non-market amenities” sectors Ωnm. Therefore, the difference in damages

among these three sectors comes only from parameter calibration.

The second important damage function form come from sea level rise, which is

based on global mean temperature change, T (t). However, unlike the SLR damages

in (13) for DICE 2010, DICE-99 models sea level rise according to a power law:

ΩSLR = α

(
T (t)

2.5

) 3
2

(22)

The damage function for “human settlements and ecosystems”, Ωhse, also uses a

power function like (22) with, of course, different parameter calibrations.

Finally, human health is based on a power equation very similar to (22), but

driven by the regional temperature level. Nordhaus and Boyer (2000, chapter 4)

present it with exact parametric values:

Ωhh = 0.002721(Ti)
0.2243 (23)

As mentioned, it is not clear how equations (21), (22) and (23) are integrated into

the net (post-damage) function represented in (18). The documentation in Chapter

4 of Nordhaus and Boyer (2000) says that estimates are run for T (2100) = 0◦,

T (2100) = 2.5◦ and T (2100) = 6◦. Damages for other T ’s are found by quadratic

interpolation. Finally, the sectoral damages are then added together, e.g.,

Ω99 = Ωag + Ωom + Ωnm + ΩSLR + Ωhse + Ωhh (24)

in order to find the total damages for any T (t). This, however, would seem to

contradict the simple damage function represented in (20) and the GAMS code for

DICE-99. Yet (24) is likely the correct version since it is derived from the appendix in

Nordhaus (2010b) – the supporting documentation to the PNAS publication Nord-

haus (2010a). In either case this model is outmoded now, replaced by simplified

version of damages in DICE 2013.
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4 FUND: Framework for Uncertainty, Negotiation and

Distribution

The FUND model is the most complex of the economic IAMs, but this comes at a

cost to its theoretical underpinnings. To run this complicated algorithm Richard Tol

and David Anthoff have written the code in C#. In contrast to Nordhaus’s recent

reduction in complexity, Tol and Anthoff continue to add more layers of detail to

their model. Importantly, FUND’s complexity comes from more realistic modelling

of climatic relations (e.g., 5-reservoir carbon capture and endogenous non-CO2 emis-

sions), but with a less detailed model of the economy. In FUND the growth rate of

GDP is an exogenous random variable. Although overall output is exogenous, popu-

lation growth endogenously reacts to climatic impacts such as land loss and disease

rates, so per capita output growth can be thought of as partially endogenous.12 Since

the FUND algorithm is not an optimization routine, it is a step removed from the

general theory on which it is built.

Instead, the complexity of FUND comes from the large number of interacting,

randomly parameterized equations. Whereas different scenarios for the DICE model

are run by a priori choice of fixed parameters, FUND employs Monte Carlo sampling

for the choice of parameters. Thus different scenarios are generated from FUND’s

a priori specification of the parameters’ probability distributions, and the reported

results of the model are the average of 40,000 Monte Carlo simulations. Anthoff and

Tol (2013a, Table MC) report that in FUND 3.7.4 there are 73 Monte Carlo variables

of which 3 have an exponential distribution, 3 are gamma and 5 are triangular. The

remaining 63 are normally distributed, 12 of which are unrestricted and the remaining

51 are truncated by an upper or lower bound. This count, however, underestimates

the total number of MC variables since 20 of them are calibrated at the regional

and/or annual level. The MC sampling of these 20 variables would occur 16 times

12However, this does not mean that climate change-induced deaths (e.g. from storms or diseases)
increase wellbeing as measured by GDP per capita. The FUND model imposes a monetary cost
to lost human life at an average of 3 times per capita GDP. Thus one death would reduce the
numerator by three times as much as the reduction in the denominator of yt,r. See equation 32.
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for each region, 30 times for each decade (for runs up to the year 2300) or 480 times

for regional-decadal variables such as the gross growth rates of population and GDP

(Anthoff & Tol, 2013a, Tables P and Y). Such variables vastly increase the total

number of random parameters used in each FUND run.

FUND’s most recent version (FUND 3.7) is an excellent source for detailed sec-

toral damage functions. FUND 3.7 contains 9 sectoral damage functions, of which 5

are presented in Section 4.2. There are both direct and indirect damages in FUND.

Direct damages are calculated as capital losses in the concerned sector. What we term

‘indirect losses’ stem from lost life, increased mortality rates and forced emigration.

These human tolls are translated into monetary figures via “value of statistical life”-

type equations discussed below. Before elaborating on these quantifications, section

4.1 presents the structure of the FUND model. Section 4.3 offers some concluding

remarks on this highly detailed economic IAM.

4.1 Foundation of the FUND 3.7 Model

The FUND model can be run as a global average, but is typically run and analyzed

across its 16 regions:

1. Australia & New Zealand

2. Central America

3. Canada

4. China, Mongolia and North Korea

5. Eastern Europe

6. Former Soviet Union

7. Japan and South Korea

8. North Africa

9. Middle East

10. South Ameica

11. South Asia

12. Southeast Asia

13. Small Island States

14. Sub-Sharan Africa

15. United States of America

16. Western Europe
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For each region the core variables – GDP growth, population, emissions, abatement

technology – are normalized such that the values in 2000 equal 100. FUND 3.7 can

be run according to five underlying scenarios of gross population and GDP growth.

The mean values of these decadal rates are reported in Tables P & Y, P.A1 & Y.A1,

P.A2 & Y.A2, P.B1 & Y.B1 and P.B2 & Y.B2 (see Anthoff & Tol, 2013a). For the

equations below the initializing values for Yt,r and Pt,r (GDP and population in year

t and region r) are given by these tables.

FUND relates economic activity to CO2-eq emissions by the Kaya Identity:

Global CO2

Emissions
=

Global

Population
× Global GDP

Global

Population

×

Global Energy

Consumption

Global GDP
×

Global CO2

Emissions

Global Energy

Consumption

FUND uses this identity at the regional level for each time period

Mt,r = Pt,r ·
Yt,r
Pt,r
· Et,r
Yt,r
· Mt,r

Et,r

Mt,r = ψt,rφt,rYt,r (25)

which can be written for policy considerations (see below) as

Mt,r =
(
ψt,r − χψt,r

)(
φt,r − χφt,r

)
Yt,r (25′)

where t is the year index, r = 1, 2, . . . , 16 is the index for the region. Mt,r is emissions

(in tonnes of CO2-eq) and Et,r is energy usage in region r in year t. Further, φt,r is the

energy intensity of production and ψt,r is the carbon intensity of energy consumption.

Thus equation (25) relates gross output to emissions by ratios of the demand (ψt,r)

and supply (φt,r) sides of the economy.

Policy intervention at the regional level can be taken against climate change by

policy choice τt,r, measured in US$/tC. First, policy interventions reduce emissions
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intensities with a one-period lag:

ψt,r = gψt−1,rψt−1,r − αt−1,rτt−1,r (26)

φt,r = gφt−1,rφt−1,r − αt−1,rτt−1,r (27)

Secondly, intervention will reduce emissions directly via the lagged parameter χ in

equation (25′)

χψt,r = κψ + (1− αt,r)τt−1,r (28)

χφt,r = κφ + (1− αt,r)τt−1,r (29)

The parameter 0 < α < 1 in equations (26)–(29) determines the extent to which

intervention reduces emissions permanently (26 & 27) and temporarily (28 & 29).

If policy intervention ceases, the second set of equations tend toward κψ, κφ.

Stability for the first set of equations depends on the varying (MC) autoregessive

parameters gψ, gφ. However, Tables AEEI and ACEI in Anthoff and Tol (2013a)

suggest that over any given period the equations (26), (27) are stable since13

0 < E[gψt,r]− 3σgψ < E[gψt,r] + 3σgψ < 1 ∀t, r

0 < E[gφt,r]− 3σgφ < E[gφt,r] + 3σgφ < 1 ∀t, r

These growth rates represent the ‘Autonomous Energy Efficiency Improvement’ (AEEI)

and the ‘Autonomous Carbon Efficiency Improvement’ (ACEI) that is expected to

occur over the next several centuries. The FUND model uses these autonomous

improvement in place of a gradual take-up of a zero-emissions backstop technology.

Policy intervention against emissions, of course, helps to limit the mean tem-

perature increase above pre-industrial levels. Global mean temperature above pre-

industrial norms, Tt, is the primary variable driving the economic damages in the

FUND model. As represented in Figure 4, emissions Mt,r of various GHGs are trans-

lated into temperature change according to the radiative forcing (RFt in equation

13The mean values for each t are reported in Tables AEEI and AECI. The variances are given fixed
at σgψ = 0.0009 and σgφ = 0.0005 for all regions and years (Anthoff & Tol, 2013a, Table MC).
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31) and depends the climate equilibrium sensitivity14 (CS) variable. The equation

is

Tt =

(
1− 1

ϕ

)
+

1

ϕ

CS

5.35 ln 2
·RFt (30)

where ϕ is the e-folding time (for CS = 3◦ this is 66 years). Regional temperatures

are given by multiplying a fixed regional factor by the global mean temperature, Tt.

The global radiative forcing variable, RFt, is given by the concentration levels

of carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), sulfur dioxide (SO2)

and, of course, sulfur hexafluoride (SF6) as:

RFt = 5.35 ln
CO2t
275

+ 0.036
(√

CH4t −
√

285
)

− 0.47 ln
[
1 + 2.01× 10−15CH40.75

t 2850.75 + 5.31× 10−15CH42.52
t 2851.52

]
− 0.47 ln

[
1 + 2.01× 10−15N2O0.75

t 7900.75 + 5.31× 10−15N2O2.52
t 7901.52

]
(31)

+ 2(0.47) ln
[
1 + 2.01× 10−152850.757900.75 + 5.31× 10−157902.522851.52

]
+ 0.00052(SF6t − 0.04)− 0.03

SO2t
14.6

− 0.08
ln
(
1 + SO2t

34.4

)
ln
(
1 + 14.6

34.4

) + 0.9

Equations (30) and (31) are the core of FUND’s climate change aspects. Note

that abatement strategies reduce emissions or energy intensity directly. This is an

important distinction: it allows damages to calculated and monetized separately as

they logically (and in the coding) after the policy intervention. Recall that in DICE

2013R, abatement reduced the wedge between gross and net output and hence can

be logically determined simultaneously with damages. In other words, policy inter-

ventions in FUND reduce the drivers of damages and not the damages themselves.

This seems to be a more realistic representation of how policy interacts with the

damages of climate change.

14Defined as the temperature increase resulting from a doubling of CO2-eq concentration above the
pre-industrial level.
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4.2 FUND 3.7 Damage Functions

Economic damages and gains from climate change in FUND are driven by temper-

ature levels above pre-industrial norms, Tt or Tt,r, and atmospheric concentrations,

Ct, of greenhouse gases (GHG). The nine sectors in which damages occur are listed

in Table 2, along with a note on what climatic variables are the proximate cause of

the damage (-) or gain (+). Although there are nine sectoral damages this section

focuses only on items (1)–(5) in Table 2. The first two – agriculture and energy

usage – represent, by far, the most significant areas in driving the social cost of

carbon estimate (Anthoff & Tol, 2013c). The two tropical storm categories are re-

viewed because of the large and unambiguous devastation these can have on people

and society. Finally, we review the complicated sea level rise mechanism in FUND

in section 4.2.5. SLR represents a unique form of damages in that it can directly

mitigated via coastal protection. The four areas not covered here (forestry, water

resources, ecosystems and human health) are smaller impact sectors. For details on

these damage functions see Anthoff and Tol (2013b).

In addition to direct, capital-impacting damages several sectoral damages lead to

lost lives and/or forced migration. As one would expect lost life comes from storms

and human health sectors. These lives lost are given an economic value according to

the Value of a Statistical Life, V SLt,r, which is time- and region-specific:15

V SLt,r = α
( yt,r

24 963

)ε
(32)

where α ∼ N(200, 1002), but truncated such that α > 0, and ε is a constant repre-

senting is the income elasticity of V SL.16

Further, losses of dry land to rising sea levels lead to forced migration. The num-

15Certain human health damages raise mortality rates, for which the economic damage is calculated
separately from V SLt,r. The value of unit of mortality is given as

VMt,r = β
( yt,r

24 963

)η
where η is the income elasticity of statistical mortality.
16It appears that this parameter is set at different values for different scenarios, ε = 1, 0.2 or > 0
(Anthoff & Tol, 2013b, p. 22).
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Table 2: FUND Damaged Sectors

SECTOR Sources of Damage

1) Agriculture ∆Tt,r (-), Tt,r (+/-) and Ct from CO2 fertilization
(+)

2) Energy consumption changes in energy usage for heating (-) and
cooling (+) from regional population, Pt,r and
global temperature, Tt

3) Tropical Storms storm intensity driven by Tt,r

4) Extra-tropical Storms storm intensity driven by CO2

5) Sea Level Rise Tt drives rising global water levels, St, leading to
losses of dry and wet lands

6) Forestry Tt and CO2 (-)

7) Water Resources cost of protection against Tt

8) Ecosystem people’s inherent valuation of ecology and
biodiversity (∆Tt, Pt, Bt)

9) Human Health diarrhoea, vector-borne diseases and
cardiovascular & respiratory diseases driven by
Tt,r increasing mortality rates

Source: Anthoff and Tol, 2013b

ber of forced migrants is given by the area lost times the region’s average population

density. The economic damage of migration is three times the income per capita:

Force Migration Cost = 3× yt,r × pop. density× dryland lost (33)

The regions receiving immigrants obtain an economic benefit of 0.4 times its income

per capita.17

17It appears forced migration in FUND 3.7 is determined by a Markov switching matrix with very
lower transition probabilities (see Anthoff & Tol, 2013a, Table I).
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Given the conversion of human suffering into monetary estimates in equations

(32) and (33), we can now assess the five main damage functions modelled by FUND.

These are Agriculture, Energy Consumption, Tropical Storms, Extra-Tropical Storms

and Sea Level Rise.

4.2.1) Agriculture

The climate change affects agricultural production, GAPt,r in three distinct (and

additive) forms: adjustment to change, deviation from the optimal growing temper-

ature and increased fertilization rates from carbon dioxide concentrations. The sum

of these impacts equal the total agricultural At,r, damages

At,r =

(
Farming Adjustment

Rate

)
+

(
Difference from

Optimal T

)
+

(
Increased Production

from CO2 Fertilization

)

where At,r is a proportion of gross agricultural production GAPt,r, which increases

or decreases according to the sign of At,r and is converted to a fraction of income by

(38) below. The variable notation for agricultural damages (-) and benefits (+) is

At,r = Art,r︸︷︷︸
−

+ Alt,r︸︷︷︸
+/−

+ Aft,r︸︷︷︸
+

(34)

The signs indicate that adjustment to temperate change, Art,r, always has a negative

impact on agricultural production. The agricultural impact from temperature level

is a homogenous quadratic equation with stochastic coefficients. Most of the time,

the linear coefficient is positive and the squared coefficient is negative, yielding a

global maximum that is positive at low levels of temperature increases. Therefore,

agriculture may benefit from initial temperature increases as regional mean temper-

ature approach their optimum. Finally, increasing levels of agricultural production,

Aft,r > 0 (reduced damages) are modelled as being driven by higher CO2 concentra-

tions that increase the fertilization rate of plants.
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The damage function for farmers’ adjustment to temperature change is18

Art,r = αr

(
∆Tt,r
0.04

)β
+

(
1− 1

ρ

)
Art−1,r (35)

where ρ > 1 is a fixed parameter in all regions which denotes farmers’ speed of

adaptation. Note that αr < 0 ∀r.
Alt,r is the per cent impact on agricultural production for region r in year t due

to the temperature level. Total regional mean temperature change since 1990 is Tt,r,

which has a quadratic impact on production:

Alt,r = δlrTt,r + δqrT
2
t,r (36)

where the regionally-specified parameters have mean values E[δlr] > 0 and E[δqr ] <

0,∀r (Anthoff & Tol, 2013a, Table A). This quadratic function may be positive

(negative) for a small (large) amount of temperature increase.

Equation (36) is meant to capture the early production benefits from low levels

of climate change. For example, at the mean (“best-guess”) values for δlr, δ
q
r for

Canada, China and the United States, the optimal temperatures increases over the

regions’ temperatures in 1990 are, respectively, 2.87◦C, 1.26 ◦C and 1.08 ◦C. These

optimal temperatures seem a bit high at first glance, though they are not out of the

question. Indeed there is some reason to believe northern countries could slightly

increase agricultural production.

More seriously, FUND 3.7 appears to have a serious parameterization problem

as there is a significant chance that δqr > 0.19 This gives a non-trivial likelihood

of the optimal temperature level being unboundedly large. As show in Figure 5,

Canada has a fairly small chance of having a positive coefficient on the quadratic

term in (36), Pr(δqCA > 0) ≈ 3.7%, but this is non-negligible for the China, Pr(δqCN >

0) ≈ 33.5%, and the United States, Pr(δqUS > 0) ≈ 25.4%. In other words, for 1/3

18For all ∆T -induced damages the key rate increase is 0.04◦C p.a.
19Specifically, the distributions for Canada, China and the United States are δqCA ∼
N(−0.016, 0.000081), δqCN ∼ N(−0.017, 0.0016) and δqUS ∼ N(−0.012, 0.000324), respectively (An-
thoff & Tol, 2013a, Table A).
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and 1/4 of FUND’s Monte Carlo simulations, respectively, China and the United

States’ agricultural outputs are strictly, monotonically increasing in temperature

levels (Tt,r > 0) and have no maximum value.

Figure 5: MC probability distribution of δqr for 3 Countries in FUND 3.7
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Source: Anthoff & Tol (2013c) Table A

Finally, increased levels of CO2 concentration above the pre-industrial level are

modelled as strictly increasing the level of agricultural production. The logic is

that greater CO2 fertilization eases photosynthesis such that plants grow faster and

require less water. Anthoff and Tol (2013b) give this dynamic the functional form

Aft,r = γr ln

[
CO2

275

]
(37)

where the denominator is the pre-industrial concentration of 275 CO2 parts per

million. The parameter γr ranges from 5.05 for sub-Saharan Africa to over 23 for

small islands states and, Australia and New Zealand.

Total agricultural production impacts At,r are then added to or subtracted from
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GAPt,r, which is translated into a proportion of income (GDP) according to

GAPt,r
Yt,r

=
GAP1990,r

Y1990,r

(
y1990,r
yt,r

)ε
(38)

The income elasticity of agriculture’s share in the (per capita) economy is ε ∼
N(0.31, 0.0225) but truncated from below such that ε ≥ 0.

Equation (38) says that the Gross Agricultural Production (GAP ) is a declining

share of total output, Y , as per capita GDP, y, increases. However GAPt,r may

increase as a share of output if the climate change has a significant positive impact

on agricultural production, At,r � 0. However, the agricultural damages are bounded

since GAPt,r ≥ 0. Hence, the impact of climate change on agriculture in FUND 3.7

has lower bound, thereby limiting potential damages, but no corresponding upper

bound on potential benefits.

4.2.2) Energy Consumption

As with agricultural production, the impact of climate change could either increase

(damage) or decrease (benefit) energy consumption. FUND models this as changes

in regional spending on heating and cooling. Since GHG’s will increase global and

regional mean temperatures, reduced space heating is a benefit and increased space

cooling is damaging. Both are driven by the global mean temperature level (relative

to 1990), regional population and income per capita. Total energy consumption

is skewed toward damages because the benefits from reduced heating are driven

by a logistic function (tan−1 Tt) with a global supremum π
2
, whereas damages from

increased cooling are exponential (with a MC parameter exponent β ∼ N(1.5, 0.25)

truncated such that β ≥ 0).

A region’s benefit from lowered heating expenditure is

SHt,r =
αHr Y1990,r · arctanTt

arctan 1.0
·
(

yt,r
y1990,r

)ε
·
(

Pt,r
P1990,r

)
∏t

s=1990AEEIs,r
(39)

where ε is income elasticity of energy consumption (which is derived from a 1995

30



estimate for the UK). The regional parameter αHr > 0, ∀r is normally distributed

around a positive mean, with low variance and is truncated from below at zero

(Anthoff & Tol, 2013a, Tables EFW & MC).

Damages to a region’s income from increased expenditure on cooling are

SCt,r =
αCr Y1990,r ·

(
Tt
1.0

)β · ( yt,r
y1990,r

)ε
·
(

Pt,r
P1990,r

)
∏t

s=1990AEEIs,r
(40)

where, β is a positive, Gaussian exponent and the parameter αCr < 0, ∀r is truncated

from above at zero (Anthoff & Tol, 2013a, Tables EFW & MC). For both equations,

AEEIs,r is ‘Autonomous Energy Efficiency Improvement’ – a variable with a global

mean of 1% in 1990 converging to 0.2% in 2200 (Anthoff & Tol, 2013b, pp. 9-10).

4.2.3) Extreme Weather I: Tropical Storms

Tropical storm intensity is driven by temperature change. The economic damages are

both direct (capital losses) and indirect (mortalities). Direct tropical storm damage

is given by

TDt,r = αrYt,r

(
yt,r
y1990,r

)ε
[(1 + δTt,r)

γ − 1] (41)

Mortalities from storm intensity are given by

TMt,r = βrPt,r

(
yt,r
y1990,r

)ε
[(1 + δTt,r)

γ − 1] (42)

where Yt,r is regional GDP and Pt,r is the population. The parameters αr and βr

are both positive and are fixed for each region and scenario (Anthoff & Tol, 2013a,

Table TS). They represent expected fraction of GDP lost to and population killed

by tropical storms in each region. Anthoff and Tol obtain these estimates form the

CRED EM-DAT website. The fixed parameter δ = 0.04◦C indicates increased wind

speed per degree warming according to the WMO; γ = 3 since wind power is the

cube of windspeed (Anthoff & Tol, 2013b, pp. 19-20).
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4.2.4) Extreme Weather II: Extra-tropical Storms

Extra-tropical storm intensity is driven by CO2 atmospheric concentrations. Direct

extra-tropical storm damage is

ETDt,r = αrYt,r

(
yt,r
y1990,r

)ε
δr

[(
CCO2,t

CCO2,pre

)γ
− 1

]
(43)

Mortalities from extra-tropical storms are

ETMt,r = βrPt,r

(
yt,r
y1990,r

)ε
δr

[(
CCO2,t

CCO2,pre

)γ
− 1

]
(44)

where αr > 0, ∀r is the benchmark damage from extra-tropical storms and βr > 0, ∀r
is the benchmark mortality from extra-tropical storm. Both are fixed. Finally, the

fixed parameter δr is regional storm sensitivity to CO2 concentration (Anthoff & Tol,

2013b, p. 21). Although it is not clear how δr is calibrated, it appears to be a fairly

rough estimate since δ = 0.21 for Australia and New Zealand, South Asia and South

America, δ = 0.13 for small island states and δ = 0.04 for all other regions (Anthoff

& Tol, 2013a, Table ETS).20

4.2.5) Land Lost from Sea Level Rise

Global Sea Level Rise, St (in metres), is given by

St =

(
1− 1

%

)
St−1 + γTt (45)

where % = 500 is the e-folding time. Clearly (45) is a stable, linear difference equa-

tion with a (very) long memory. However, each ratching up of the global mean

temperature, Tt, raises the steady-state sea level above the pre-industrial level.

Dryland loss is fundamentally different than other damages because it can be

directly abated by policy. All other damages can only be indirectly reduced through

policy interventions in φt,r, ψt,r and χψ, χψ in equations (26), (27), (28) and (29).

20The parameter γ = 1 for all scenarios.
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However, direct projection of dryland comes at the cost of natural wetlands. That

is, dryland protection drives wetland loss beyond that lost “naturally” to rising sea

levels.

Sea level rise (SLR) is translated into potential (without abatement) and actual

cumulative (with abatement) losses of dryland. The potential cumulative land loss,

ζr, can only as large as the region’s total area in the year 2000:

Area2000,r ≡ ζr ≤ Areat,r

where Areat,r is a region’s area in year t.

Conversely, only a proportion of wetlands are thought to be vulnerable to SLR

WM
r ≥ WC

t,r

where WM
r is region r’s maximum at-risk wetlands, which is assumed to be less than

the region’s total stock of wetlands, which is set equal to the region’s 1990 stock,

W1990,r. The total accumulated wetlands lost is WC
t,r in region r up to year t.

Potential cumulative dryland loss is

CDt,r = min {δrSγrt , ζr} (46)

where δr ∼ N(µr, σr) > 0 is the amount of land loss (km2) for a one metre rise in

sea level. It is truncated from below such that it is always positive. The distribution

ranges from a high of δSEA ∼ N(157 286, 90 1702) for Southeast Asia, to a low of

δCAN ∼ N(970, 9702) for Canada (Anthoff & Tol, 2013a, Table SLR). The expo-

nential parameter, γr is calibrated by a digital elevation model but is a normally

distributed MC variable that is truncated such that 0 < γr < 1, ∀r (Anthoff & Tol,

2013b, p. 11).

A particular year’s annual potential dryland loss is the difference between the

potential accumulated loss and the actual loss up to that point:

Dt,r = CDt,r − CDt−1,r (47)
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with an actual cumulative loss

CDt,r = CDt−1,r +Dt,r (48)

where Dt,r is the actual dryland lost in a particular year.

Coastline protection is the sole difference between actual and potential annual

losses such that

Dt,r = (1− pt,r)Dt,r (49)

where pt,r is the protection policy variable.

Thus dryland would be enveloped by the rising seas at the rate given by δrS
γr
t

up to a maximum of ζr, where St,r is driven by the global temperature level. But

the actual loss can be slowed (or even stopped) by implementation of policy that

protects pt,r% of the coastline in year t, region r.

Since the dryland loss equations are in km2, FUND must monetize these direct

losses (land value) and indirect costs (forced migration). A region’s annual lost

dryland is valued according to

V Dt,r = ϕ

(
Yt,r/Areat,r

Y A0

)ε
(50)

where the scaling parameter is ϕ is a MC variable ϕ ∼ N(4, 4) > 0, truncated from

below. The fixed term Y A0 = 0.635 for all regions represents the average income

density of the OECD in 1990 (Anthoff & Tol, 2013b, p. 11).

Secondly, the level of forced emigration is the region’s average population density

times the dry land loss. Thus, annual indirect costs are

Emigration Costs = 3× yt,r ×Dt,r × dt,r

where density is simple dt,r = Pt,r
Areat,r

. The Markov transition table presented in

FUND’s documentation appendix determines the (random) allocation of these emi-

grants to new regions (Anthoff & Tol, 2013a, Table I). The number of immigrants

then counts positively toward the recipient region’s income. However, each migrant
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adds only 40% to the host’s per capita income, thereby pulling down average income.

Wetland loss is linear in the changing (global) sea level

Wt,r = ωsr ·∆St + ωMr · pt,r · ∆St (51)

ωsr is the direct loss from rising sea levels, and ωMr represents the wetlands lost to

coastal protection practices, pt,r. Both of these are variables are MC and bounded

from below to be positive (Anthoff & Tol, 2013a, Table SLR). As noted these annual

losses accumulate to WC
t,r up to a maximum of WM

r :

WC
t,r = min

{
Wt−1,r +Wt,r , W

M
r

}
(52)

The value of wetlands is increasing in per capita income and population density,

and decreases (as with dryland value, V D) in the initial stock wetland area

VWt,r = α

(
yt,r
y0

)β (
dt,r
d0

)γ (W1990,r −WC
t,r

W1990,r

)δ

(53)

The last term is the proportion of a region’s 1990 ‘stock’ of wetlands remaining.

Parameters y0 = 25000 and d0 = 27.9 are normalization constants. The expo-

nents are normally-distributed MC variables, bounded in 0 < γ < 1 and β ∼
N(1.16, 0.462) > 0. The scaling parameter α reflects the “net present value of fu-

ture stream of wetland serves” (Anthoff & Tol, 2013b, p.13), with the distribution

α ∼ N(5 880 000, 187 0002).

The final step in the FUND model is to calculate the value of coastal protection,

pt,r, from a cost-benefit analysis of saved dryland and foregone wetlands. The net-

present value of V D given no coastal protection is

NPVV Dt,r =
∞∑
s=t

Dt,rV Dt,r

(
1 + εdt,r

1 + ρ+ ηgt,r

)s−t
(54)

where ρ = 0.03, η = 1 and gt,r are the pure discount rate, consumption elasticity

of marginal utility and the growth rate of per capita income. ε ∼ N(1, 0.04) is the
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income elasticity of dryland value (Anthoff & Tol, 2013b, p.15).

The NPV wetland lost from full coastal protection is

NPVVWt,r =
∞∑
s=t

Wt,rVWt,r

(
1

1 + ρ+ ηgt,r

)s−t
(55)

Similarly, the present value of full coastal protection is

NPVV Pt,r =
∞∑
s=t

(
1

1 + ρ+ ηgt,r

)s−t
· πr ·∆St

=
1 + ρ+ ηgt,r
ρ+ ηgt,r

· πr ·∆St (56)

where πr is the annual unit cost of coastal protection. πr is normally distributed

and bounded from below to be positive. The range of variables reflects the value and

exposure of the coast line. For example, Western Europe is given the MC distribution

πWEU ∼ N(153.9, 52.62) > 0, whereas Eastern Europe has the distribution πEEU ∼
N(3.1, 1.72) > 0.

Taking equations (54), (55) and (56) together, the cost of partial protection in

any given year and region is

Pt,r =

[
1− 1

2

(
NPVV Dt,r + NPVVWt,r

NPVV Pt,r

)]
+

(57)

FUND takes this functional form from Fankhauser (1995).

4.3 FUND conclusion

As noted FUND 3.7 has five baseline scenarios of economic and population growth.

For any of these a business as usual (BAU) valuation of damages can be computed

by adding together all of the sectoral direct and indirect damages – five of which

have been outlined in detail above. The BAU version of FUND would, presumably,

set abatement policies and coastal protection policies equal to zero (τt,r = 0, pt,r =

0, ∀t, r). However, this scenario comparison would differ from FUND’s approach to
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quantifying the social cost of carbon. FUND determines SCC by running the model

repeatedly with a pulse of CO2 emissions in each run (Ackerman & Munitz, 2012a;

Anthoff & Tol, 2013c). The sum of these pulses of damages above the BAU level of

damages then produces the marginal willingness to pay to offset the marginal tonne

of carbon emissions.

Clearly the FUND model offers an extensive menu of sector-specific damages that

have been parameterized with great care. However, even with this great detail there

remains work to be done. First, many of their physical science sources for functional

forms are 2 decades old. Even granting this inertia, there are still a fair number of

parametric concerns (as mentioned in the section 4.2.1). Finally, there is also the

issue of equity in the FUND and other models reviewed here. Because it is based

on a willing-to-pay approach, all sectoral damages (direct and indirect) are scaled in

proportion of per capita income, which arguably skews downward the estimation of

the social cost of carbon as poorer regions tend to be more vulnerable to the vicissi-

tudes of climate change (IPCC Working Group II, 2014, Chapters 9, 12-14), but the

damages there appear low as they may be less able to pay.

5 PAGE: Policy Analysis of the Greenhouse Effect

Chris Hope’s Policy Analysis of the Greenhouse Effect (PAGE) models emissions of

carbon dioxide (CO2), methane (CH4) and sulfur hexafluoride (SF6). These three

GHG emissions feed into atmospheric concentrations, which slowly decay according

to a piece-wise differentiable function (Hope, 2006). Decay rates are used in place of

a reservoir model. Based on the GHG concentrations, radiative forcing is the sum

of a logarithmic concentration function for CO2, square root concentration function

for CH4, a linear function for SF6 and an exogenous forcing variable is added to the

explicitly modelled gases to capture the impact of other GHGs. Thus the PAGE

radiative forcing function is a slightly simplified version of equation (31) in FUND.

Rather than go into detail about the environmental aspects of PAGE we briefly

discuss its modelling approach in comparison with FUND in Section 5.1 and then
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summarize the PAGE damage functions in Section 5.2.

5.1 Structure of the PAGE model

The PAGE model is similar to FUND’s structure in three areas: random sampling,

regionally-specified routines for which there are, thirdly, exogenous rates of economic

growth. As with the FUND model, PAGE incorporates uncertainty into its estimates

via repetitive random sampling. However, instead of Monte Carlo simulations, the

PAGE model uses Latin Hypercube sampling, which is meant to better approximate

real-world realizations of random variables (Hope, 2006). For the 80% of parameters

which are completely unknown, PAGE assumes a triangular distribution. For the re-

maining 20% of random parameters normal, log-normal, Pareto or other distributions

are used based on the observed phenomena.

PAGE is designed and calibrated for 8 regions, and therefore cannot be run as a

singular, global routine. The regions that are separately parameterized are:

1. European Union

2. United States of America

3. Other OECD Countries

4. Africa and the Middle East

5. China and Centrally Planned Asia

6. India and South East Asia

7. Latin America

8. Former Soviet Union and East Eu-

rope

PAGE is specifically designed with the EU as the focus region. Therefore, certain

variables, such as tolerable temperature levels (see sec. 5.2), are specified by scaling

factors relating non-focus regions to the focus region’s (the EU’s) calibrated value.

Finally, economic growth rates in this model are exogenous. For each region r and

time period t there is a specified annual growth rate (in %) of GDP, which is denoted

by GRWt,r. Because the model is run for 10 discrete time periods of lengths ranging

from 1 year to 50 years21, annual growth rates have to be compounded accordingly.

21The time period index runs as t = 2000, 2001, 2002, 2010, 2020, 2040, 2060, 2080, 2100, 2150, 2200.
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Thus, for any year Yt in time period t, region r’s level of output is given as

GDPt,r = GDPt−1,r ·
(

1 +
GRWt,r

100

)Yt−Yt−1

(58)

In these three respects the PAGE model appears rather similar to the FUND model.

However, its approach to computing damages, as we see below, is quite different from

both the FUND and DICE models.

5.2 Damage Modelling in PAGE

The baseline model is PAGE2002, which was developed with data and assumptions

from the Third Assessment Report of the IPCC. This older PAGE vintage was the

primary model used in the (Stern, 2007). Hope has since extended and updated

the model, the latest version of which is PAGE09. It is based on new research

and the Fourth Assessment Report of the IPCC. We focus on PAGE2002 since the

model’s structure is largely unchanged in PAGE09 (Hope, 2011). However, we cannot

focus exclusively on PAGE2002 because the damage function in PAGE09 has been

slightly amended from its 2002 version. The new version keeps the two basic forms

of damages (economic and non-economic impacts), but adds explicit damages from

rising sea levels (Hope, 2011).22

In PAGE2002 direct damages are modelled in two broad and generic categories:

Economic and Non-economic. Both damages are driven by the temperature level

and rate of temperature change relative to some effective tolerable level and rate.

However, it is only a region’s realized temperature level, RTt,d,r, relative to the tol-

erable “plateau level” that causes direct impacts, denoted by It,d,r. The subscript

index d = {0, 1} indicates whether the function is for economic damages (d = 0)

or for non-economic damages (d = 1). The direct impacts, It,d,r, are measured in
◦C and then translated into monetary value. In addition to these regional damages,

PAGE2002 models “damages from a discontinuity”, which is an additive, probabilis-

tic impact increasing in likelihood when the global realized temperature, GRTt, is

22Sea level rises were implicitly modelled in PAGE2002, so the advancement is merely an explicit
damage equation in PAGE09.
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above a certain ‘discontinuity threshold’, TDIS (Hope, 2006).

For each region, r, there is a natural tolerable temperature level TPd,r (P for

plateau) and a natural tolerable rate of temperature change per year TRd,r. Both of

these are specified as proportions of the focus region, r = 0 (the EU), such that:

TPd,r = TPd,0 · TMr and TRd,r = TRd,0 · TMr

where TMr is the regional multiplier (TM0 = 1) and, TPd,0 and TRd,0 are the

tolerable rates and level in the focus region. Clearly, the functional forms of damages

are the same for both sectors; it is merely the parameter values that differ between

the two types of damages.

The natural tolerable levels are fixed for each region and time period. How-

ever, the effective tolerable levels can be adjusted by policies aimed at the plateau,

PLATt,d,r, or the rate-of-change, SLOPEt,d,r. Thus the Adjusted Tolerable Plateau

and Rate are specified for each time period and region as:

ATPt,d,r = TPd,r + PLATt,d,r (59)

ATRt,d,r = TRd,r + SLOPEt,d,r (60)

These determine the Adjusted Temperature Level against which the realization of

impacts are determined is

ATLt,d,r = min

{
ATPt,d,r , ATLt−1,d,r + ATRd,r · (Yt − Yt−1)

}
(61)

where Yt is the specific year studied within the (usually) multi-year time period, t.

Equation (61) says that the policy-adjusted, tolerable temperature level is the

lesser of the policy-adjusted plateau level and the policy-adjusted tolerable rate

of change in regional temperature from last period’s tolerable temperature level

(ATLt−1,d,r). Recall that equations (59)–(61) are specified for each region, time

period and for both types of damages modelled in PAGE2002.

Given the region and time period the impact from either damage type, It,d,r, is

simply the difference by which the region’s realized temperature, RTt,r, exceeds the
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tolerable, adjusted level determined in (61):

It,d,r = max

{
0 , RTt,r − ATLt,d,r

}
(62)

where impacts in (62) are in degrees centigrade. Clearly, unlike FUND, climate

change cannot produce positive benefits (i.e., negative damages are excluded by

equation 62).

Monetary impacts are determined by a power function. To convert It,d,r into

monetary damages – usually US$ – PAGE2002 specifies GDP-weighted impacts,

WIt,d,r for each region. Since PAGE2002 is based on the Third Assessment Report

the mean temperature increase from a doubling of CO2 is 2.5◦C, which is the baseline

against which damages are calibrated. With Wd,r indicating the value of a region’s

economic (d = 0) and non-economic (d = 1) losses from a temperature increase above

2.5◦C we have

WIt,d,r =

(
It,d,r
2.5

)POW
·Wd,r ·GDPt,r ·

(
1− IMPt,d,r

100

)
(63)

where IMPt,d,r is the mitigation policy that directly reduces the monetary losses to

the two sectors. It is set to different levels depending on the scenario being tested.

Note that in PAGE damages are sequentially prior to abatement.

In addition to the direct damages there are global impacts from discontinuity,

IDISt, which are also measured in ◦C:

IDISt = max

{
0 , GRTt − TDIS

}
(64)

where GRTt is the global realized temperature. The discontinuity threshold variable

is randomly chosen from the triangle distribution TDIS ∼ T (2, 5, 8) for each Latin

Hypercube run of the model.

As with direct impacts, the discontinuous impact is translated into monetary

values by regional weight, here WDISr, applied to GDPt,r. Instead of a power

function, however, discontinuity impacts are weighted by a probabilistic factor, 0 <
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PDIS < 1. Thus,

WIDISt,r = IDISt ·
(
PDIS

100

)
·WDISr ·GDPt,r (65)

where the probability PDIS is a random variable (fixed for each run) pulled from

T (1, 10, 20).

Taking equation (63) for d = 0, 1 and equation (65) together, the total damage

for each region in a particular time period is the sum

WITt,r = WIt,0,r +WIt,1,r +WIDISt,r (66)

PAGE aggregates over all the years in each period (via linear midpoint interpolation)

to produce the Aggregate Damage for each region

ADt,r = WITt,r ·
(
Yt+1 − Yt

2
− Yt − Yt−1

2

)
(67)

Finally, the aggregate damages are translated into the global, net present value

of damages by use of a regional cost discount rate, drt,r, and a fixed impact rate mul-

tiplier, ric. Thus summing and discounting the aggregate damages over all regions

and time periods gives the total Discount Damages as

DD =
∑
t,r

ADt,r ·
t∏

j=1

(
1 +

drj,r · ric
100

)−(Yj−Yj−1)

(68)

Equation (68) is the core damage estimate in PAGE2002. It remains the foundation

on which PAGE09’s updated damages are built.

In PAGE09 the calibrated conversation of direct impacts (in ◦C) to monetary

values becomes (Pycroft, Vergano, Hope, Paci, & Ciscar, 2011):

WIt,d,r = αd,r

(
TRt,d,r

3.0◦C

)β
·GDPt,r ·

(
1− IMPt,d,r

100

)
(69)

where αd,r is damage estimate for a 3◦C warming – the Fourth Assessment Report ’s
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estimate of mean temperature change from a doubling of CO2. When the realized

temperature is greater than 3.0◦C then the exponent β has greater impact (it has

replaced POW in (63)). β is drawn from T (1.5, 2, 3) in each run of PAGE09.

Unfortunately we have not been able to find, let alone access, the coding for

PAGE09, nor were we able to find a summary of the functional relations as there

exists for PAGE2002. Thus, we cannot report on the functional form of sea level rise

nor on the exact form of its damages. However, Hope (2011, p.5) states

In PAGE09, sea level impacts before adaptation are a polynomial function of

sea level rise, and economic and non-economic impacts before adaptation are

a polynomial function of the regional temperature.

which implies that once SLR is modelled it is also translated into monetary damages

via an equation with the same form as (69).

Table 3: Calibrated Parameters for Sea Level Rise Impacts in PAGE09

Item Unit Variable Distribution

Calibration sea level rise m SCAL T (0.45, 0.5, 0.55)

Sea level impact at SCAL % GDP WS T (0.5, 1.0, 1.5)

Sea level exponent none POWS T (0.5, 0.7, 1)

This interpretation is supported by the parametric data Hope (2011, Table 4)

provides. Table 3 reproduces the sea level rise information from Hope’s brief sum-

mary of the updated damage estimation in PAGE09. This implies a function in the

form

Ws = SCALPOWs (70)

where the sea level damage is measured in metres. Despite the imprecise represen-

tation of SLR damages in PAGE09, we have at least a sense of this new sectoral

damage is incorporated into the latest PAGE vintage.
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5.3 PAGE Conclusion

The PAGE model shares similar weaknesses with the FUND model. In particular,

the exogenous modelling of economic growth remains a barrier to general equilibrium

analysis (see sec. 6.3). Additionally, the regions in PAGE are designed to always be in

reference to a focus region. Although the PAGE modelers wish to primarily analyze

the EU (Pycroft et al., 2011; Stern, 2007), this approach could lessen the accuracy of

the results for non-EU regions. The FUND model has similar drawbacks in its region-

to-region extrapolations (e.g., relying on UK housing surveys for heating/income

elasticities and US agricultural studies), but these are largely due to limited sector-

specific empirical data rather than a design choice.

On the other hand, PAGE strikes a balance between the FUND model’s high,

even excessive, level of detail and the DICE model’s oversimplification of damages.

This is especially evidenced by the relatively limited number of distinct forms of the

damage function. PAGE approaches fine tuning through calibration rather than by

positing a multitude of functional forms. Though arguably less accurate, the chances

for compounded misspecification is reduced.

6 Concerns and Critiques

The three integrated assessment models reviewed here are far from academic curiosa.

They are influential in European Union climate policy debates23 and form the basis

of US regulatory agencies’ carbon cost estimates. Specifically, the US Interagency

Working Group on Social Cost of Carbon (2010) relies on the arithmetic average

of DICE, FUND and PAGE values for its estimate of the social cost of carbon

(Ackerman & Stanton, 2012). With such direct implications for climate policies in

the world’s largest economies one would hope concerns regarding these IAMs would

be relatively minor. However, the models’ outstanding issues are broad in scope and

appear to magnify pari passu with the complexity of design. Although remaining, by

23PAGE2002 was the base model for the Stern Report (see Stern, 2007, Part II).
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and large, impressive modeling feats, there is a great deal of room for improvement.

This section summarizes three general critiques and concerns related to the eco-

nomic IAM approach to the social cost of carbon. First, there is an irrevocable

tension between economists’ use of climate models and the advancement of environ-

mental discoveries. Models estimating SCC borrow findings from climate science,

which can be rapidly overshadowed by new findings. Given the non-expertise of

economists in such areas, the incorporation of new findings into SCC estimates tends

to be delayed and, potentially, misinterpreted. Second, we review the Tol/Ackerman

controversy to highlight the coding and mathematical errors that inevitably arise

from increasing the complexity of model design. Finally, and most importantly, we

discuss the models’ infidelities vis-à-vis the general equilibrium theory approach to

pricing externalities, which is the conceptual framework upon which each model is

built.

6.1 Environmental Research vs. Economic Modeling

The most understandable and unavoidable concern of any climate model is the

(im)precision of its formal representation of natural processes. This is particularly

challenging for economists whose expertise lies neither in programming IAMs nor in

estimating climatic phenomena. The typical SCC model, therefore, is a simplified

IAM whose “results approximate those of the most complex climate simulations”

(Hope, 2006, p. 21). This pragmatic approach requires occasional reconfiguration

of equations or parameters, which the developers of the three models reviewed here

have done admirably (see, e.g., Hope, 2010; Nordhaus, 2010b; Anthoff & Tol, 2013c).

However, because SCC model calibrations are done with respect to aggregate figures

(such as global mean temperature and CO2 concentrations) recently discovered errors

in the basic, underlying functions can persist for undue periods.

Of course, economists are well aware of the empirical weakness of their social cost

of carbon estimates. In his seminal review of the literature Tol (2009, p. 38) notes

the unresolved issue that “[e]stimates are often based on extrapolation from a few

detailed case studies, and extrapolation is to climate and levels of development that

are very different from the original case study.” Moreover, models are incomplete due
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to ‘missing effects’ that are either too minor or too complex to be reliably integrated

into SCC estimates (Tol, 2009, p. 43-4). Though widely acknowledged, there is

no easy or singular method by which to correct for such shortcomings. This point

is demonstrated by the antithetical approaches adopted by William Nordhaus and

Richard Tol.

As mentioned in section 3.1, Nordhaus has stepped back from the use of more

complicated damage function modelling. While Nordhaus’s admission of economists’

programming limitations is refreshing (Nordhaus, 2012), designing DICE 2013R with

a single damage function (equation 3) forces him to rely on the estimates of other

economists. Indeed the calibration of this damage functions comes from the analysis

and review of the 200-plus SCC estimates in Tol (2009), with an ex post damage

addition of 25%, which is meant to account for the missing effects common to all

estimates. Under Nordhaus’s approach, economists must largely resign themselves

to re-calibrating their parameters as climate science advances. Though it is a decid-

edly secondary (or even tertiary) place for economic models of climate change, this

approach is arguably a more efficient division of labour between disciplines.

Relying on secondary climate estimates can bury nuances crucial to the in-

terpretation of new findings. For example, a recent study shows that the over-

representation of urban-based weather stations in China has led to the overestima-

tion of the country’s warming from 1951 to 2010 (Ge, Wang, & Luterbacher, 2013).

By using an urban/rural land-area weighting scheme and accounting for changing

land-use patterns, the researchers find the six-decade temperature increase to be

between 27% and 12% lower than the standard estimates of temperature change in

China. This is an important improvement in estimating historical climate change.

However, these new figures may not be as well suited to the needs of economic pro-

jections of damages from climate change. If a key economic consequence of global

warming is the increasing energy use for indoor cooling, then temperature change

estimates weighted by population density are more appropriate than the land-area

weights used by climate scientists. In general, the method by which natural scientists

aggregate estimates tends to differ from the approach of social scientists. Though

this particular example may not be a serious issue on its own, it represents precisely
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this kind of nuance willfully ignored by Nordhaus’s approach.

At the other end of the spectrum is the modelling approach of David Anthoff and

Richard Tol’s FUND model.24 Each of the nine damaged sectors in FUND are built

on distinct functions sourced from multiple empirical studies (see Anthoff & Tol,

2013b). Yet key sectors rely on outdated, regionally-specific studies to establish the

functional form of damages – precisely what Tol (2009) warns against. Of course,

all three models lack regionally precise estimates in certain areas. The particular

problem of FUND is that it projects Panglossian outcomes for agricultural production

in response to climate change simply because it continues to rely on two decade

old studies (Ackerman & Munitz, 2012a).25 Specifically, the quadratic form of the

temperature level function, equation (36), is derived from four empirical studies

published between 1992 and 1996 (Anthoff & Tol, 2013b, p. 7). These studies are

now outdated.

Recent work by Schlenker and Roberts (2009) on US agricultural output evi-

dences the over-optimism of FUND’s quadratic function. This is a fortiori true

given FUND’s estimate of the positive production impact from CO2 fertilization

in equation (37), which is strictly increasing in emissions. Schlenker and Roberts

(2009) analyze the production of three staple crops (corn, soybeans and cotton) at

the county-level in the US from 1950 to 2005. In each case, crop output slowly rises

as local exposure frequencies increase from below- to above-average temperatures.

This validates the positive output effects from small temperature increases modeled

in FUND’s equation (36). However, crop output suddenly and steeply declines be-

yond a particular threshold temperature.26 The rapid decline is markedly sharp even

when estimated with an 8th-order polynomial function (Schlenker & Roberts, 2009,

see Fig. 1, p. 15595). The result suggests that a relatively mild concave quadratic

24The PAGE model lies somewhere between the approaches of Nordhaus and Tol. The use of
multiple (four) types of damages in PAGE09 is similar to FUND. However, the sectors share a
common (quadratic) functional form. Thus Hope’s efforts are geared toward accurate calibration
of these functions, which is more akin to the RICE/DICE approach.
25Ackerman and Munitz (2012a) first point out this issue with respect to FUND 3.5, but the
problem persists in FUND 3.7
26The temperature thresholds are approximately 29◦ C for corn, 30◦ C for soybeans and 32◦ C for
cotton (Schlenker & Roberts, 2009, p. 15594)
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function (e.g. equation 36) is ill-suited to capture this behaviour.

In addition to the panel analysis Schlenker and Roberts (2009, p. 15596) show

that cross-sectional and time series regressions yield the same conclusion: agricul-

tural production suffers severe nonlinear effects from increased exposure to warmer

temperatures. These results are especially important for economists. The time se-

ries regression shows that even with the enormous productivity gains in agriculture

from 1950 onwards there has been no noticeable improvement in crop resilience to

extreme temperatures. Secondly, county-level cross-sectional analysis allows for the

possibility of year-to-year adaptation by farmers.27 Evidently adaptation has been

inconsequential for larger temperature increases. Finally, although the study takes no

explicit account of the fertilization benefits of higher CO2 concentration, Schlenker

and Roberts’s focus on total production level impacts suggests that this additive

factor, equation (37), should be given little to no weight in a damage function.

The point here is not to single out problems in FUND 3.7. (Indeed, the impre-

cision found in this model is likely to be, at some level, implicitly built into DICE

and PAGE.) Rather, we wish to highlight that even sophisticated economic models

can lag for years behind climate science. As another example, all three IAMs treat

sea level rise (SLR) as globally uniform, but recent evidence suggests this is not

accurate. Kopp (2013) affirms that over the past decade the northeast US seaboard

has experienced a more rapid sea-level rise than the global average, although he con-

cludes that it is too early to determine if the recent SLR is “beyond the bounds of

20th-century variability” (Kopp, 2013, p. 5). Conversely, IPCC Working Group II

(2014) shows that SLR in East Asia has been much lower than anticipated, whereas

the East Pacific waters have risen faster. Since the SLR variability in this region is

driven by trade winds it is liable to a quick reversal. Thus, while FUND’s use of a

digital elevation model to calibrate regions’ exposure to SLR incorporates regional

damage specificity, it cannot account for regional and temporal differences in the rate

of SLR per se. With much lower degrees of precision, the DICE and PAGE models

do little more than calibrate regional weights in order to estimate the varied impacts

from SLR. Such differences may prove important for highly exposed areas such as

27They point out that fixed effects panel only allows for within-year planting adaptations.
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the eastern United States.

Inevitably, economic models will lag and simplify the climate change models

that they seek to build upon. Model inaccuracies are, of course, not eliminated by

reducing complexity. In fact using secondary or tertiary estimates of climate damage

may simply compound these lagged errors. This view would augur for greater detail

in SCC models, albeit with the attendant attention that must be paid to ongoing

environmental research. This is certainly the sentiment behind the FUND and,

to a lesser extent, PAGE modeling approaches. However, as we discuss in the next

section, even the most precisely designed models will face practical coding difficulties.

In fact, it was in light of coding error risks that Nordhaus (2012) choose to reduce

the complexity of the DICE/RICE model.

6.2 Coding Complexity: The Tol–Ackerman Controversy

In a keynote speech for the European Associate of Environmental and Resource

Economists (EAERE) William Nordhaus (2012) discusses the “scary problem of

computational complexity.” He notes that in the coding industry standard is to

expect 1 error per 1000 lines of code, and 1 error per 10,000 lines of “super-clean

code”. He therefore suspects that “there are multiple errors in our IAMs.” Given

economists’ relative unfamiliarity with coding architecture practices, Nordhaus ar-

gues for a reduction in the complexity of cost-of-carbon models. Among the examples

of programming errors in economic IAMs that he presents is the potential division

by zero in the FUND 3.5 model. This problem was first discovered by Ackerman and

Munitz (2012a). However, Anthoff and Tol (2012) vociferously rejected this finding

and thereby set off the Tol–Ackerman controversy.

FUND is an impressively complete integration of a climate model with economic

damages. As sections 3, 4 and 5 suggest, coding the FUND model requires a much

more sophisticated algorithm than the other two models reviewed here. With the

help of David Anthoff, Frank Ackerman and Charles Munitz learned to install, run

and debug FUND 3.5. They found that the temperature-level damage to agricultural

production (the counterpart of version 3.7’s Alt,r, our equation 36) contained a coding

error which allowed for a possible division by zero.
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In FUND 3.5 the optimal temperature for agricultural production is a random

parameter, T ∗, and the realized temperature level T is generated through the carbon

cycle and radiative forcing equations.28 The temperature level’s impact on agricul-

tural output is – as in sec. 4.2.1 – a quadratic function of T , but with linear- and

quadratic-term weights determined by deviations of the optimal temperature from a

given value (=1.6). Specifically,

Al =
−2AT ∗

10.24− 6.4T ∗
· T +

−2A

10.24− 6.4T ∗
· T 2 (71)

Both T ∗ and A are regionally-specific Monte Carlo parameters which are chosen 16

times (one for each region) in each of the 40,000 MC runs. Clearly, the denominator

of (71) equals zero when T ∗ = 1.6, at which point Al is undefined in FUND 3.5. In

particular as T ∗ → 1.6 then |Al| → ∞, implying extreme values are produced in the

neighborhood of T ∗ = 1.6± ε.
Ackerman and Munitz (2012a) report that T ∗ is normally distributed. Without

specifying the distribution they note the critical divide-by-zero value of a region’s op-

timal temperature is within one-quarter of a standard deviation of the distribution’s

mean:

T ∗ = 1.6 < E[T ∗]± 1

4
σT ∗

Therefore, one can reasonably expect that in at least some of the 40,000 model runs

Al will approach −∞ or +∞, depending on whether T ∗ → 1.6 from the left or right.

This is a crucial problem for Monte Carlo simulations since the reported results are

the average of all model runs.

Indeed, the purpose of Monte Carlo simulations is to produce accurate projections

given a set of probabilistic variables. However, MC runs with T ∗ ≈ 1.6 will skew

the averaged Al results.29 Moreover, as Ackerman and Munitz (2012a, p. 222)

point out, “this problem could become more severe as the number of Monte Carlo

iterations rises, since the likelihood of coming dangerously close to the critical value

28Time and regional subscripts have been removed for the sake of clarity.
29This to say nothing about the inaccuracy of extreme values resulting from computers’ floating-
point representation of real numbers.
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steadily increases.” Normally, increasing the number of MC runs should reduce the

uncertainty of a projected estimate, but with an equation like (71) the standard error

increases with the number of iterations.

In their reply, Anthoff and Tol (2012) note that the diagnostic test run by Acker-

man and Munitz is not exactly in the form of equation (71). Ackerman and Munitz

(2012a) use the function F (X) = 1
X−0.25 , with X ∼ N(0, 1), to demonstrate extreme

variation that a near division by zero causes. Anthoff and Tol (2012) argue that this

misrepresents their formulation in which there is also a normal variable in the nu-

merator. It is not clear why this should matter. Their more effective response is that

they perform a diagnostic test by “trim[ming] the realizations that are closest to the

suspected division-by-zero” and compare these results to the untrimmed trials; they

find no substantial difference in the estimates of agricultural sector damage (Anthoff

& Tol, 2012, p. 42).30 Despite this spirited defense, in FUND versions 3.6 and 3.7

the agricultural damage function is altered such that there is no longer any risk of

dividing by zero, e.g. equation (36).

This controversy is important as a cautionary tale. Expert programmers are not

immune to programming errors, so there is no reason to expect economists to be any

less error-prone. However, recognizing and correcting coding mistakes should make

economic IAMs progressively more sound. Certainly, there is merit in pressing ahead

with these models, though with a healthy recognition of the discipline’s limits. On

the other hand, given such coding problems (more examples are given in Nordhaus,

2012), one can understand the logic in Nordhaus’s decision to return to his, and

other economists’, area of comparative advantage: building dynamic macroeconomic

models. As we discuss below, there is a need for environmental economists to revisit

the conceptual framework that the social cost of carbon has been built upon. Ad-

vancements in economic integrated assessment modeling have been impressive, but

it will be for naught if the link with theory is lost.

30In their rejoinder Ackerman and Munitz (2012b, p. 43), somewhat sardonically, note that “It
is possible to run a model with a known algebraic defect, and then manually screen the results to
determine whether any distortions were caused by the defect but it does not seem to us like an
ideal modeling methodology.”
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6.3 Cost or Benefits? Conceptual Problems in the Social Cost of Carbon

Before one can tackle the practical difficulties of following climate science research

and best practices for coding architecture, one must sort through a number of con-

ceptual issues. These include determining the type of growth model to be used (e.g.,

Nordhaus & Boyer, 2000, chapter 2), the proper discount rate applied to future dam-

ages (e.g., Arrow et al., 2013; Stern, 2007, Part II) and the modeling approach to

rare but extreme events that are often typified by threshold dynamics (e.g., Jones &

Yohe, 2008; Greiner, Grüne, & Semmler, 2010) Greiner et al., 2010. Firstly, and at a

more fundamental level, economists must decide upon a methodology for quantifying

and aggregating the welfare gains/losses from climate change experienced by people

in different regions and societies. On this methodological score the agreement among

economists is amazingly widespread. The vast majority of social cost of carbon mod-

els use the approach outlined in Fankhauser et al. (1997), known as the willingness

to pay (WTP) welfare theory.

Simply put, the WTP approach evaluates the benefits (reduced losses) from avoid-

ing climate change in order to establish how much consumption the representative

agent would forego (i.e., would be willing to pay) for such benefits. The flip side of

this quantity is the willingness to accept (WTA) climate change, in which a worsen-

ing climate would be balanced by the increasing level of consumption made available

through higher investment in traditional capital accumulation rather than mitiga-

tion (Fankhauser et al., 1997). Posing the problem in WTP/WTA terms ensures

that the social cost of carbon estimate measures the marginal benefit (WTP) and/or

marginal cost (WTA) of climate change mitigation. Evaluating policies at the mar-

gin, of course, is essential for coherent analysis of general equilibrium models. Of

course, marginal costs and benefits equate only at the optimum – an obvious but im-

portant point that many SCC estimates gloss over by estimating only one marginal

value (typically, WTA) and not the other.

In a poignant reminder of the WTP/WTA conceptual foundation Foley et al.

(2013) show that, whether in a static or dynamic model, the social cost of carbon
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has an unambiguous value only along optimal policy paths.31 This has important

implications for quantifying SCC because “[e]stimates of costs and benefits of green-

house gas mitigation must be conditional on a scenario that specifies a reference

path of consumption and environmental quality” (Foley et al., 2013, p. 94). If the

baseline is a ‘business-as-usual’ path (or some other policy path that is suboptimal

in climate mitigation) then SCC is an ambiguous value: it depends on whether one

measures the costs or benefits from climate change mitigation. Although there is

a great deal of uncertainty about the actual impacts from climate change, there is

strong evidence that they will be severe (see IPCC, 2012). Given the relatively small

amount of investment (≈ 2% of global GDP) needed to eliminate industrial CO2 it is

likely that marginal benefits will produce very large cost of carbon estimates (Foley

et al., 2013, p. 95). Yet all of the models reviewed here base their SCC estimate

on the marginal costs. This is a practical necessity since capital loss estimates are

observable and, therefore, can be empirically estimated. Yet, this empirical neces-

sity has serious conceptual implications when the marginal cost estimates are just

assumed to equal latent benefits. All economic IAMs could benefit form a more

complete discussion of this issue.

Finally, there is a serious conceptual issue in using predefined, exogenous growth

rates. IAMs without endogenously (optimal or not) determined economic develop-

ment violate a key tenet of general equilibrium theory: agents’ optimal capital allo-

cation. The use of exogenous growth in the FUND and PAGE models means that

representative agent’s “consumption path is invariant to different scenarios. The cost

and benefit of climate change mitigation, however, entail reallocations of resources at

a non-marginal scale so that the assumption of exogenous consumption paths does

not hold” (Foley et al., 2013, p. 93). That is, the high cost of climate damages

predicted by each of the economic IAMs implies very different investment decisions

(and hence consumption paths) based on the realized environmental scenario. While

it is not clear if the FUND and PAGE models could be redesigned to have some kind

of endogenously generated output function, it is a highly advisable next step.

31We thank Gregor Semieniuk for bringing this article to our attention. Note as well that the
common result MC 6= MB is also discussed in Tol (2009, p. 38-39)
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7 Conclusion and Outlook for Future Research

This report provided an overview of how economic damages from climate change are

determined in the 3 major integrated assessment models that calculate the social

cost of carbon: DICE, FUND and PAGE. These models can be considered the state

of the art for economists’ modeling of climate change. We began with a review of the

IPCC approach to climate modeling and how economic IAMs have developed out of

this approach. We then provided a detailed exposition of the damage functions of

each economic IAM. We found a great deal of variation in each model’s approach

to damage function modeling. DICE uses a reduced-form, single equation represen-

tation of damages. FUND models each damage separately using as much sectoral

detail as possible. The PAGE model uses two reduced-form damage functions (eco-

nomic and non-economic impacts), but also includes a threshold damage function to

account for a climatic tipping point. We have also shown that despite the relative

sophistication of these models, a great deal of work remains to be done. Economic

models of climate change and the social cost of carbon are still at a nascent stage. We

hope to introduce a more complete model of economic dynamics and policy action

in future work.

First, the introduction of nonlinear economic and climatic dynamics is essential.

For example, the notion that there exists a climatic tipping point beyond which

global temperature change becomes self-reinforcing is increasingly accepted among

environmental scientists, but has yet to make serious inroads into economic models of

climate change. One notable exception is Greiner et al. (2010) who model the Skiba

plane in CO2 concentration-temperature-capital space. The nonlinear (i.e., curvy)

Skiba plane divides three-dimensional space into domains of attracting steady states.

One attractor is slightly above the pre-industrial CO2 concentration level; the other is

at a very high and dangerous CO2 level. Depending on the global mean temperature,

they find that concentration levels between 170% and 240% of the pre-industrial level

represent a sharp tipping point. If carbon emissions were halted at a level below the

tipping point, Greiner et al. (2010, p. 72-3) show that CO2 concentration would slide

back to approximately 150% of the pre-industrial level (which is associated with only
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minor temperature increases). Conversely, at CO2 levels above the threshold, even

zero-emissions scenarios would generate concentrations increasing to 300% of the

pre-industrial level of atmospheric CO2. Even if such non-linearities were a remote

possibility (which does not seem to be the case), the precautionary principle would

demand that we take decisive abatement action now.32 At the very least, the leading

economic IAMs should all take explicit account of these threshold nonlinearities.

Secondly, the climate change IAMs here reviewed seriously assess only abatement

policies. Very little attention is paid to responses to climate change damages despite

the pressing practical importance of adaptation. With the exception of FUND’s

costal protection variable (Pt,r in section 4.2.5) the modeled climate change policies

only reduce emissions and, thereby, damages. Abatement policies are no doubt

important, but we have reached a point at which a certain level of climate change

is inevitable. At a recent talk Michael Oppenheimer (18 November 2013) noted

that even if global emissions were to stop today, temperatures would not stop rising

for another 40 years, when the current atmospheric CO2 is finally depleted to an

equilibrium level. Therefore, a crucial next step is to embed adaption policies into

climate change models. In fact, the urgency of adaptation is a central message in

the UN’s most recent report on climate change (IPCC Working Group II, 2014).

Unlike abatement policy functions, however, adaptation policy is necessarily spe-

cific to the form of damage against which it is directed. PAGE’s delineation of

economic, threshold and non-economic damages is instructive. Adaptation to eco-

nomic damages would include lowering cooling costs, protection agricultural produc-

tion and, as already done in FUND, coastal protection against sea level rise and

attendant flooding. These efforts require large investments and, potentially, capi-

tal relocation costs. Adaptation to extreme-but-rare events such as tropical storms

and wild fires will also require infrastructural development, but the model for such

cost estimates would differ greatly from incremental economic damages. Thirdly,

one must consider the human and ecological toll of climate change. In addition to

32Importantly, the macro-level nonlinearities devised by Greiner et al. (2010) are supported by
smaller-scale studies such as the agricultural research of Schlenker and Roberts (2009) discussed in
section 6.1 above.
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the aforementioned damages, these non-economic impacts come from higher disease

rates, extreme heat or cold and lost biodiversity. Again, these non-monetary dam-

ages require a very different modeling structure. Finally, in considering adaptive

policy responses to climate change, our models must be honed toward the specific

risks and capacities of the geographic region in question.

In the coming months our future research will focus precisely on such issues, by

asking what kind and how much adaptive and protective infrastructure should be

built in order to limit climatic damages. To that end, this report will serve as a primer

for a robust and coherent modeling approach to the economic damages of climate

change. Ultimately a complete economic policy model should include abatement

and adaptation options as well as a transition path for renewable energy sources

(e.g. Greiner, Grüne, & Semmler, 2014). However, we have a long way to go before

reaching this goal. Our immediate next step is to develop a more generic model for

government investment in infrastructure to adapt to, and abate, climatic damage.

Indeed, although the impacts will vary from region-to-region and year-to-year, every

country will need to invest in new infrastructure against the growing risks induced

by climate change.

56



References

Ackerman, F. & Munitz, C. (2012a). Climate damages in the FUND model: a disag-

gregated analysis. Ecological Economics, 77, 219–224.

Ackerman, F. & Munitz, C. (2012b, September). Reply to anthoff and tol. Ecological

Economics, 43.

Ackerman, F. & Stanton, E. A. (2012). Climate risks and carbon prices: revising the

social cost of carbon. Economics: the open-access, open-assessment E-journal,

6 (2012-10). Retrieved from http://www.economics-ejournal.org/economics/

journalarticles/2012-10

Anthoff, D. & Tol, R. (2012). Climate damages in the FUND model: a comment.

Ecological Economics, 81 (42).

Anthoff, D. & Tol, R. (2013a, 18 September). The climate framework for uncertainty,

negotiation and distribution (FUND): tables version 3.7.

Anthoff, D. & Tol, R. (2013b, 13 May). The climate framework for uncertainty,

negotiation and distribution (FUND): technical description version 3.7.

Anthoff, D. & Tol, R. (2013c). The uncertainty about the social cost of carbon: a

decomposition analysis using fund. Climatic Change, 117 (515-530).

Arrow, K., Cropper, M., Gollier, C., Groom, B., Heal, G., Newell, R., . . . Weitz-

man, M. (2013, July). Determining benefits and costs for future generations.

Environmental Economics, 341, 349–350.

Fankhauser, S. (1995). Protection versus retreat: the economic costs of sea-level rise.

Environment and Planning A, 27 (2), 299–319.

Fankhauser, S., Tol, R., & Pearce, D. (1997). The aggregation of climate change dam-

ages: a welfare theoretic approach. Environmental and Resource Economics, 10,

249–266.

Foley, D. K., Rezai, A., & Taylor, L. (2013). The social cost of carbon: seven propo-

sitions. Economic Letters, 121, 90–97.

57

http://www.economics-ejournal.org/economics/journalarticles/2012-10
http://www.economics-ejournal.org/economics/journalarticles/2012-10


Ge, Q., Wang, F., & Luterbacher, J. (2013). Improved estimation of average warming

trend of chiange from 1951-2010 based on satellite observed land-use data.

Climatic Change, 121, 365–379.
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